Risk factors for the evolutionary emergence of pathogens
نویسندگان
چکیده
Recent outbreaks of novel infectious diseases (e.g. SARS, influenza H1N1) have highlighted the threat of cross-species pathogen transmission. When first introduced to a population, a pathogen is often poorly adapted to its new host and must evolve in order to escape extinction. Theoretical arguments and empirical studies have suggested various factors to explain why some pathogens emerge and others do not, including host contact structure, pathogen adaptive pathways and mutation rates. Using a multi-type branching process, we model the spread of an introduced pathogen evolving through several strains. Extending previous models, we use a network-based approach to separate host contact patterns from pathogen transmissibility. We also allow for arbitrary adaptive pathways. These generalizations lead to novel predictions regarding the impact of hypothesized risk factors. Pathogen fitness depends on the host population in which it circulates, and the 'riskiest' contact distribution and adaptive pathway depend on initial transmissibility. Emergence probability is sensitive to mutation probabilities and number of adaptive steps required, with the possibility of large adaptive steps (e.g. simultaneous point mutations or recombination) having a dramatic effect. In most situations, increasing overall mutation probability increases the risk of emergence; however, notable exceptions arise when deleterious mutations are available.
منابع مشابه
A Note on Evolutionary Rate Estimation in Bayesian Evolutionary Analysis: Focus on Pathogens
Bayesian evolutionary analysis provide a statistically sound and flexible framework for estimation of evolutionary parameters. In this method, posterior estimates of evolutionary rate (μ) are derived by combining evolutionary information in the data with researcher’s prior knowledge about the true value of μ. Nucleotide sequence samples of fast evolving pathogens that are taken at d...
متن کاملMultiple scales of selection influence the evolutionary emergence of novel pathogens.
When pathogens encounter a novel environment, such as a new host species or treatment with an antimicrobial drug, their fitness may be reduced so that adaptation is necessary to avoid extinction. Evolutionary emergence is the process by which new pathogen strains arise in response to such selective pressures. Theoretical studies over the last decade have clarified some determinants of emergence...
متن کاملCross-scale dynamics and the evolutionary emergence of infectious diseases
When emerging pathogens encounter new host species for which they are poorly adapted, they must evolve to escape extinction. Pathogens experience selection on traits at multiple scales, including replication rates within host individuals and transmissibility between individuals. We introduce and analyze a stochastic, multi-scale model linking pathogen growth and competition within individuals t...
متن کاملEmerging infectious disease: what are the relative roles of ecology and evolution?
The increasing threat of infectious diseases in humans has renewed interest in factors leading to the emergence of new diseases and the re-emergence of familiar diseases. Examples of seemingly novel diseases currently spreading in human populations include HIV, dengue hemorrhagic fever and Lyme disease; drug-resistant forms of well-known diseases such as tuberculosis are also increasing. The pr...
متن کاملWhat limits the evolutionary emergence of pathogens?
The ability of a pathogen to cause an epidemic when introduced in a new host population often relies on its ability to adapt to this new environment. Here, we give a brief overview of recent theoretical and empirical studies of such evolutionary emergence of pathogens. We discuss the effects of several ecological and genetic factors that may affect the likelihood of emergence: migration, life h...
متن کامل